SECTION 4 - Water quality indicators

RIVERINE HABITAT STUDIES

Fisheries Studies

The original fish communities of the Great Lakes region are of recent origin. Melt water from the Wisconsinan glacier created aquatic environments for fish. Original fish gained access through migration from connecting waterways. A description of the fish community in the Shiawassee River Watershed at the time of European settlement (early 1800's) is not available. However, anecdotal accounts of the time mention several species. In 1858, the commercial basin fish trade was based on sturgeon, trout, muskellunge, pickerel (walleye), mullet (Sucker sp.), whitefish, perch, roach (sunfish), black bass, bill fish (gar), and catfish. (MDNR, Fishery Division). The Original fish habitat of the Shiawassee River watershed has been greatly altered by human settlement. The 1900's gave rise to the industrial era and the urbanization of the Shiawassee River watershed. Cities and towns located near the river became more developed as their population increased. The discharge of human wastes and synthetic pollutants into the river degraded water guality to the extent that only the most tolerant fish species could survive. Dams were built for flood control, flow augmentation, and water supply to municipalities and industry. The biologic communities in the Shiawassee River and Lakes have improved significantly since the 1970's with water quality improvements. Continued efforts to improve water quality will most probably result in greater biological integrity.

Present day biological communities must adapt to human alteration of the watershed. The geological and hydrological characteristics of the watershed and the development of an extensive drainage system result in an unstable flow and reduce habitat and only biological communities that can adapt will persist. Management options are available to minimize stream degradation and preserve biological integrity.

Fish communities have been altered through intentional and inadvertent introduction of exotic species. Fish stockings by the Michigan Department of Natural Resources (MDNR), Fisheries Division has focused on improving recreational fishing opportunities, specifically with stocking walleye in Lake Fenton, Lake Ponemah and Lobdell Lake.

Advisories to limit the consumption of certain fish species and sizes (fish contaminant advisories [FCAs]) have been published by MDEQ and the Michigan Department of Community Health for portions of the Shiawasse River and the South Branch of Shiawassee River for PCB's, (downstream of the Superfund site). All inland lakes, reservoirs, and impoundments within the State of Michigan are also under a fish advisory for mercury contamination. The latter is a general advisory applied to all inland lakes in Michigan since not all inland lakes, reservoirs, and impoundments have been tested or monitored. Table 4-1 lists the FCAs published for the whole Shiawassee Watershed.

Table 4-1 FISH Advisory Information						
Water Body	Location	Fish	Restricted	Restriction		
Objeure		Species	Population			
Shiawassee	Below Owosso	Carp	Women and	<22 inches - One		
River			children	meal per week		
			Women and	22+ inches - One		
			children	meal per month		
	Below Owosso	Rock Bass	Women and	6-18 inches - One		
			children	meal per week		
	Below Owosso	Smallmouth	Women and	14-30 inches - One		
		Bass	children	meal per week		
Shiawassee	Byron to Owosso	Carp	General	Do not eat these fish		
River	Byron to Owosso	Calp	population	DO HOL CAL LICSC IISH		
	Byron to Owosso	Northern Pike	Women and	22-30 inches – One		
			children	meal per month		
			Women and	30+ inches – 6		
			children	meals per year		
	Duron to Ourooco	Smallmouth	Women and	14-30 inches – One		
	Byron to Owosso	Bass	children	meal per month		
Shiawassee			General			
River, South Br	M-59 to Byron	All species	Population	Do not eat these fish		
All inland lakes,	Entire watershed	Crappie	General	8-22inches - One		
reservoirs, and		Ciappie	population	meal per week		
impoundments			Women and	•		
			children	8-22 inches - One meal per month		
	Entire watershed	Largemouth	General	14-30+ inches - One		
		and	population	meal per week		
		Smallmouth	Women and	14-30+ inches - One		
		Bass	children	meal per month		
	Entire watershed	Muskellunge	General	30+ inches - One		
		Ū	population	meal per week		
			Women and	30+ inches - One		
			children	meal per month		
	Entire watershed	Northern Pike	General	22-30+inches - One		
			population	meal per month		
			Women and	22-30+ inches - One		
	Entine wetenshed	Deals Dean	children	meal per month		
	Entire watershed	Rock Bass	General	8-18 inches - One		
			population Women and	meal per week 8-18 inches - One		
			children	meal per month		
	Entire watershed	Walleye	General	14-30+ inches - One		
			population	meal per week		
			Women and	14-30+ inches - One		
			children	meal per month		
	Entire watershed	Yellow Perch	General	8-18 inches - One		
			population	meal per week		
			Women and	8-18 inches - One		
			children	meal per month		

* Michigan Department of Community Health, 2001. Michigan 2001 Fish Advisory., Michigan 2001 Flint River Assessment

Macroinvertebrate Studies

Benthic monitoring assesses the quality of a water body, specifically the Shiawassee River. The volunteer monitoring program uses trained volunteers to gather information about the relative health of the area's streams and rivers. The major element of the program is the collection and analyzing of benthic macroinvertebrates. Invertebrates are valuable subjects for water quality studies because they stay put. They are not very mobile and unlike fish they cannot move to avoid pollution. Using these creatures to identify water quality conditions is based on the fact that every species has a certain range of physical and chemical conditions in which it can survive. The kinds of benthic invertebrates living in a stream indicate conditions within the stream because they cannot migrate to a different location if conditions are not conducive to survival. Some organisms can survive in a wide range of conditions and are more tolerant of pollution, and so are labeled "tolerant". Other species are very sensitive to changes in conditions and are "intolerant" of pollution. These are labeled "sensitive". The presence of tolerant organisms and few or no sensitive organisms indicates the presence of pollution, because pollution tends to reduce the number of species in a community by eliminating the organisms that are sensitive to changes in water quality.

An added benefit to this kind of program is there is a built in education component. Because volunteers do the testing they must be trained. The volunteers have also helped to build awareness of pollution problems.

Currently the Shiawassee River does not have an existing benthic monitoring program. After discussions with the Flint River Watershed Coalition (FRWC), it is the intent of the Monitoring and Mapping Committee to partner with the FRWC program to expand their program in the future to include at least 2 sites in the Shiawassee Watershed. One Located near the headwaters and another near where the Shiawassee leaves Genesee County.

Lake Studies

Within the Shiawassee Watershed there are at least 10 lake associations. These private associations are made up of concerned lake property owners that have come together to protect and preserve their lakes. The threats to a lake are going to be unique to that lake, but the threats can be grouped into the following categories:

- Man made pollutants: oil, chemicals, litter, heavy metals such as mercury ...
- Natural pollutants: High nutrients such as phosphorus or naturally occurring elements such as arsenic
- Sediment or water clarity
- Temperature and dissolved Oxygen
- Nuisance plants and animals
- Biodiversity (Lack of)
- Restricted recreation

Each association has volunteers that donate time or money so water testing can be done. There are several types of testing that can be done. The most common is to test the water's chemistry. Volunteers will take samples of water at different locations and have it tested. Some of the tests that can be done are:

- Transparency
- Phosphorus
- Nitrogen
- Chlorophyll
- Dissolved Oxygen
- Temperature

Some of these tests must be done on site; others have to be sent to a lab. For example volunteers for the Lake Fenton Property Owners Association collect water samples and have them sent to a lab for chemical testing through a program called Cooperative Lakes Monitoring Program (CLMP). This is a program run by Michigan Lakes & Stream Association. This is a non-profit corporation comprised of individuals and associations who desire to conserve and improve Michigan's lakes, rivers and streams, and their watersheds.

In a different approach, Lobdell-Bennett Lake Association has contracted the services of Dr. Pullman to perform a biodiversity assessment. This is where a trained professional will identify plant species in the lake then maps the location and quantity to get a picture of the lake's biodiversity. This assessment is similar to benthic monitoring because certain plant species are more sensitive to changes in the water conditions and are "**intolerant**" of pollution. By mapping the types of plants present and their quantity it can be inferred that the water quality is **poor** or **good**. Other information gathered by this method is the absence or presence of invasive species such as Millfoil or Curly Leaf Pond Weed, to name a couple. By reducing invasive species, this allows good or desired plants habitat. The more diverse the plant biology the more divers the animals that are supported by them can be.

Regardless of the testing methods used, the information gathered becomes valuable in identifying problems, and over time shows the changes in water quality. This change or trend becomes valuable because every lake has what is referred to as a turnover rate. This is the time it would take for a lake to replace all of its water. If the lake is small or has a large inlet and outlet allowing more water to pass through it, the turnover rate could be measured in months. More often in the larger lakes where the water is regulated by relatively small outlets the turnover rate is measured in years. For example, Fenton Lake has a turnover rate of about ten years. If a lake is polluted the time it takes to dilute or eliminate that pollution can also take years.

Once the problems have been identified the association can then implement management techniques to reduce or manage threats. Many lakes associations have programs to reduce invasive plant species either through harvesting or targeted herbicide treatment. Plants are not the only invasive species identified. Certain fish, invertebrates or algae can be considered invasive or detrimental. One example is: approximately 3 years ago zebra muscles were identified in Lobdell Lake.

WATER TESTING WITH PROJECT GREEN

Global Rivers Environmental Education Network (GREEN) is a curriculum based, mentored program designed to propose solutions to local environmental problems using water quality testing. This project has been in existence for fourteen years in Genesee County under the direction of the Genesee County Intermediate School District (GISD). In late 2003 the Flint River Watershed Coalition was approached by Earth Force Green and General Motors to be the coordinator of the GREEN in the Flint River Watershed. FRWC was identified as the primary organization that could help improve program participation and effectiveness because of its focus on water quality monitoring and environmental education. The FRWC Board of Directors has endorsed this vision and has agreed to take full administrative control over the next two years. In 2004 the Genesee County Drain Office on behalf of the Phase II program partnered with the FRWC with funding and mentors. In the spring of 2005 and 2006, Hundereds of students had a combination of class time and field experience on the local rivers. The students learned about water quality and testing procedures and went to various sites on the Flint River and tributaries to take water samples for the following indicators.

- Dissolved Oxygen
- Nitrates
- PH
- Fecal Coliform

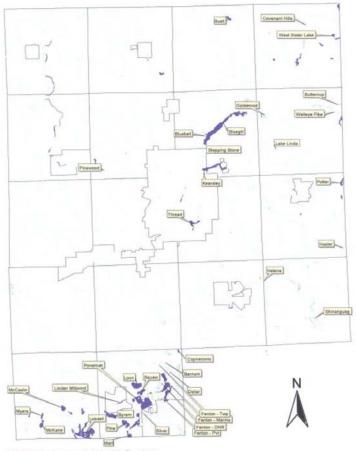
- Temperature
- Total Solids
- Turbidity
- Total Phosphorus

By testing for the above indicators the students can compare the results to the "norm" and draw conclusions on the health of the water. Chemical testing is a snapshot of water health, and the results should not be taken alone. By using chemical testing and other water quality indicators such as benthic monitoring or photo/ physical observations, changes to the water can be shown.

Although the data has not compiled at this time within Genesee County there was 16 school (24 teachers) and hundreds of students that had the opportunity to participate.

E. Coli Water Sampling (Health Department or Local Agencies)

The following language from the Michigan Water Quality Standards regulates the allowable limits of *E. coli* bacteria in surface waters of the State:


"R 323.1062 Microorganisms.

Rule 62. (1) All waters of the state protected for total body contact recreation shall not contain more than 130 Escherichia coli (E. coli) per 100 milliliters, as a 30-day geometric mean. Compliance shall be based on the geometric mean of all individual samples taken during 5 or more sampling events representatively spread over a 30-day period. Each sampling event shall consist of 3 or more samples taken at representative locations within a defined sampling area. At no time shall the waters of the state protected for total body contact recreation contain more than a maximum of 300 E. coli per 100 milliliters. Compliance shall be based on the geometric mean of 3 or more samples taken during the same sampling event at representative locations within a defined sampling area. (2) All waters of the state protected for partial body contact recreation shall not contain more than a maximum of 1,000 E. coli per 100 milliliters. Compliance shall be based on the geometric mean of 3 or more samples, taken during the same sampling event, at representative locations within a defined sampling area."

The Genesee County Health Department performs Weekly e. coli test from May through September on the following water bodies within the Shiawassee River Watershed:

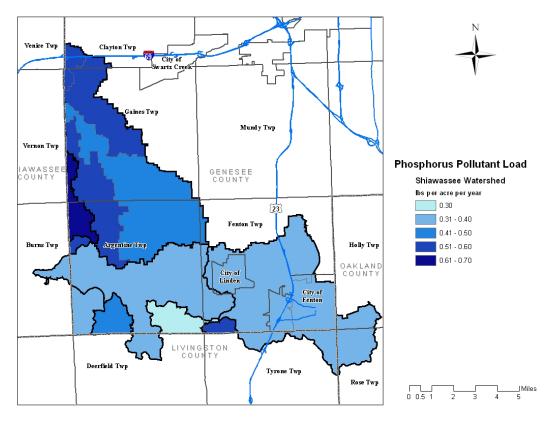
- Barnum
- Byram Lake
- Copneconic
- Dollar
- Fenton Lake (4)
- Linden Mill Pond
- Lobdell
- Loon
- Marl Lake
- McCaslin Lake
- McKane Lake

- Myers Lake
- Pine Lake
- Ponemah Lake
 Oikura Lake
- Silver Lake
- Squaw Lake
- Genesee County Health Department Surface Water Sampling Locations

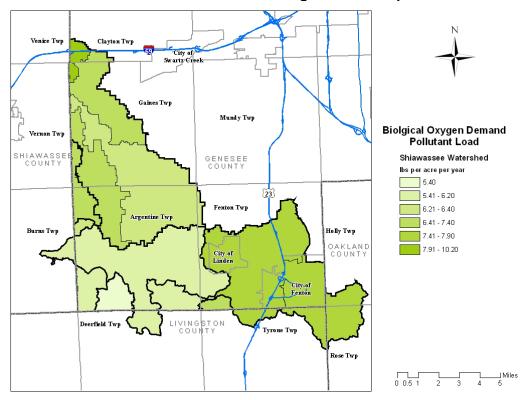
8/11/99 Environmental Health Services

Figure 4-1 E. Coli Test Sites Within Genesee County **WATER CHEMISTRY AND** HYDROLOGY STUDIES

Water Body	Waterbody Decription	Pollutants	Expected TMDL Date
FENTON LAKE	Vicinity of Fenton.	Fish Tissue- Mercury.	2011
LOBDELL LAKE	2 miles SW of Linden (Argentine Twp.)	FCA-PCBs; Fish Tissue-Mercury.	2010
LAKE PONEMAH	NW of Fenton.	FCA-PCBs; Fish Tissue-Mercury.	2010
SHIAWASSEE RIVER & S. BR. SHIAWASSEE RIVER	Saginaw River confluence u/s to Byron Millpond Dam; including the S. Br. Shiawassee River from the Shiawassee River confluence at Byron u/s to M-59 (vicinity of Howell)	FCA-PCBs	2010
SHIAWASSEE RIVER WATERSHED	Saginaw River confluence to include all tributaries	WQS exceedances for PCBs	


Table 4-3 Michigan Section 303d TMDL Water Bodies

USGS Monitoring


There are no USGS stream gauges within the Shiawassee River Watershed. The closest gauge is located in Owosso MI, approximately 26 river miles downstream of this watershed's outlet.

POLLUTANT LOAD ANALYSIS

The pollutant load analysis was conducted utilizing the Environmental Protection Agency's Spreadsheet Tool for Estimating Pollutant Loads (STEPL). Phosphorus, 5day Biological Oxygen Demand (BOD), and sediment loadings were all calculated on a subwatershed basis, using this program. The methods used to calculate urban loadings of phosphorus, sediment, and BOD primarily utilized the runoff volume and land use specific pollutant concentrations for each Subwatershed to provide an average annual loading. Agricultural sediment calculations utilized the universal soil loss equation (USLE), widely used to calculate average annual soil losses from sheet and rill erosion (EPA, 2004). Phosphorus and BOD were calculated for agricultural areas by multiplying the soil load by a pollutant concentration for nutrients in the sediment. Graphical results of these calculations are presented in Figure 4-2 through Figure 4-4 and numerically in .

Figure 4-2 Phosphorus Pollutant Load

Figure 4-3 BOD Pollutant Load

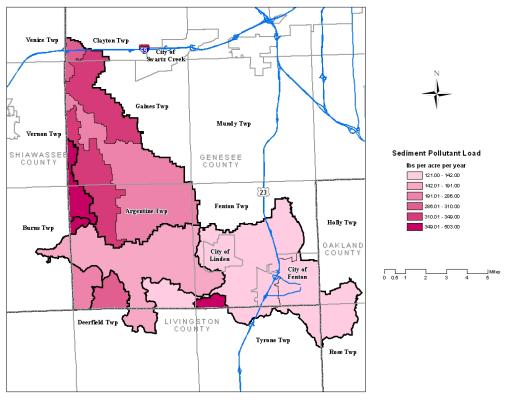


Figure 4-4 Sediment Pollutant Load

Table 4-4 l	Unit Area	Storm	Water	Loading	Data
-------------	-----------	-------	-------	---------	------

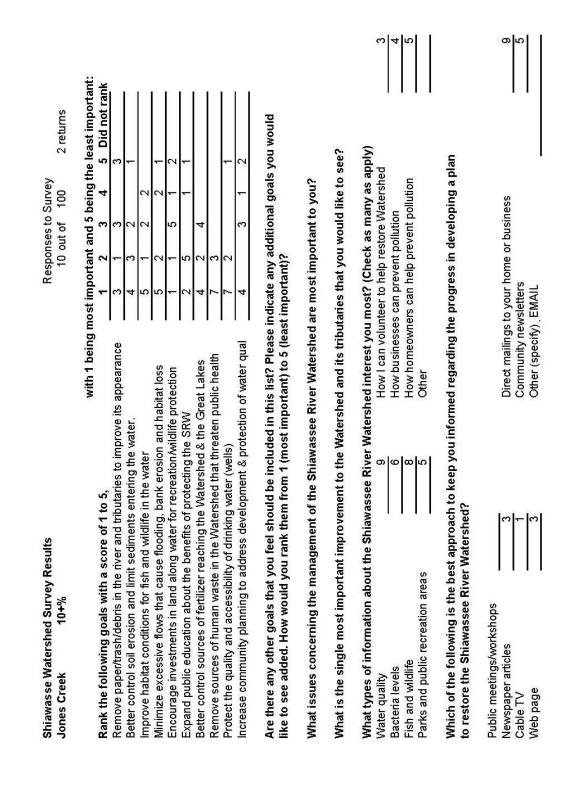
Watershed	No.	N Load	P Load	BOD Load	Sediment Load
		lb/ac/yr	lb/ac/yr	lb/ac/yr	lb/ac/yr
Corrigal Drain	0077	3.0	0.6	7.0	346
Denton Creek	0546	3.1	0.6	7.4	444
Jones	0984	2.8	0.5	6.4	286
North Ore	8555	1.9	0.3	6.2	121
Shiawassee Outlet 1	0559	3.4	0.6	10.2	303
Shiawassee Outlet 2	8558	3.3	0.7	7.4	495
Shiawassee Outlet 3	8557	2.9	0.6	6.4	503
Shiawassee River 1	8550	2.4	0.4	6.1	191
Shiawassee River 2	8551	2.4	0.4	7.7	142
Shiawassee River 3	8552	2.4	0.4	7.9	132
Shiawassee, S. Branch	8553	2.4	0.4	6.0	275
Webb	0079	3.1	0.6	7.3	349
Yellow River	8554	2.2	0.5	5.4	310

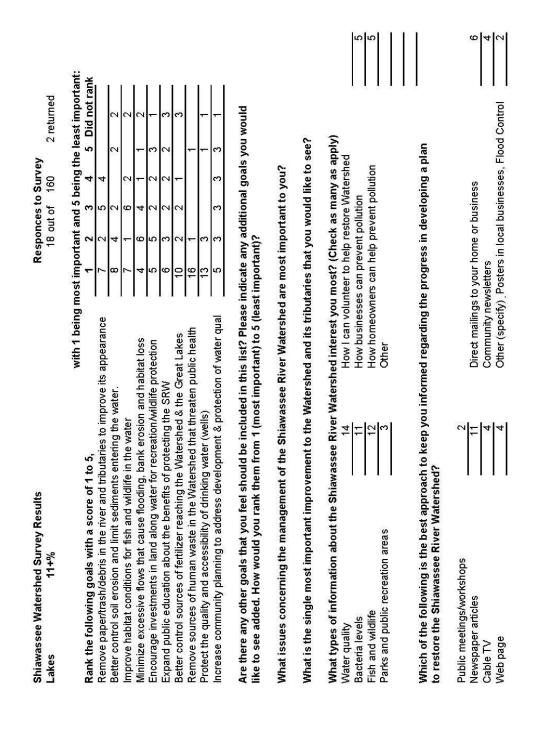
Source: Tetra Tech

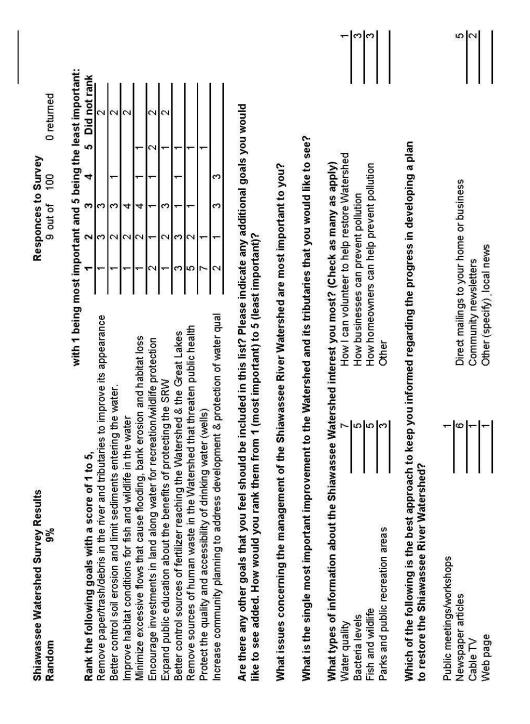
SECTION 5 - COMMUNITY OUTREACH

PUBLIC PARTICIPATION PROCESS

The Public Participation Plan (PPP) for the Shiawassee River was submitted as part of the Combined PPP in September 2005. The Combined PPP was for the Lower Flint River, the Upper Flint River and the **Shiawassee River**. This Plan outlines the roles of the steering committee, stakeholder groups, and the general public in developing the watershed management plan and how the information would be used during the decision-making process.

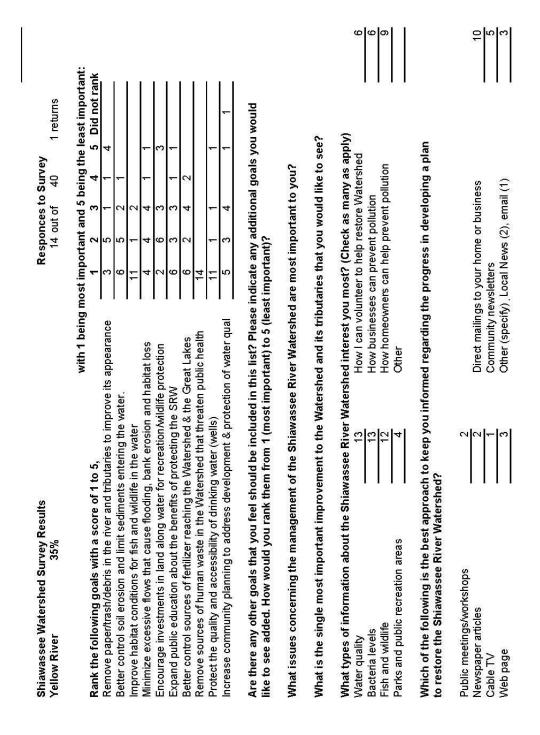

The goal of the PPP was to effectively involve stakeholders and the public throughout the watershed management planning process so that they contribute during the process and understand the plan recommendations to gain support for implementation. Key stakeholders in the watershed were identified. Materials for stakeholders to use, to educate their constituents was developed. Lastly, the plan sought to obtain useful, measurable social feedback information throughout the public participation process.


One criteria was that the Public Participation Process needed to be flexible to allow for changes along the way. Obtaining sufficient public input on watershed projects takes creativity, persistence, and commitment. While the PPP for this watershed outlines specific activities that were to be completed, the activities were modified as needed.


The following list summarizes the main venues in which public involvement will be sought.

- Public Briefing
- Stakeholder Workshops
- Focus Groups: as needed
- Report to Municipal Officials

There have been a total of 6 stakeholder meetings for the Shiawassee River Watershed. 2 were just for the Shiawassee. Part way through the process it was combined with the Lower Flint and the Upper Flint Watersheds. There were an additional 4 combined stakeholder/ public meetings. Attendances had been hit and miss for the combined meetings. Because there was poor public turnout at the combined meetings, it was decided, a survey would be used to solicit public opinion. A citizen survey was developed based on a survey done in the Anchor Bay Watershed. The Survey was mailed to 500 residents, split between 240 riparian landowners, 160 lake property owners, and 100 were random property owners. The survey was limited to residential properties. Sixty-seven residents responded to the survey, (results below). Regular updates on the progress of the program are given to the **Municipal officials** at their regular Advisory meeting. Part of reporting to the Municipal officials was education. The Public Education survey was given to the elected and appointed municipal officials. This was to determine what their educational needs were. The first of an Update Report was sent out to the municipal officials in May of 2005. The purpose of the update is to discuss what all the workgroups and subcommittees are doing. It is the intent that regular updates will follow on a regular basis.



Watershed Management Plan

		046	13
2 returns	aast important Did not rank 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1		
lvey	ng the le 2 2 3 2 4 5 2 2 5 2 1 2 2 1 2 3 2 2 3 2 2 90als you e to see	oly) shed ion g a plan	
f 100	15 beir 3 5 beir 2 2 2 2 2 2 2 1 1 2 2 0 nal g	as app Watel tion t pollut eloping	siness
Responces to Survey 16 out of 100	ant and 3 3 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7	many restore preven preven	e or bu
Res 1	mporta 555555555555555555555555555555555555	leck as to help i prever an help gress	ur hom ers
	with 1 beingmost important and 5 being the least important:inprove its appearance12345Did not rankhe water.561231he water.561211ion and habitat lossinformation and habitat loss64211ion and habitat lossinformation and habitat lossinformation and habitat loss41121information and habitat lossinformation and habitat loss326321information and habitat loss3263211ed & the Great Lakes111211ells)3263211ells)3443211ells)3443211cluded in this list? Please indicate any additional goals you wouldincortant)?awassee River Watershed are most important to you?he Watershed and its tributaries that you would like to see?into see?into see?	Atershed interest you most? (Check as many as apply) 14 How I can volunteer to help restore Watershed 13 How businesses can prevent pollution 10 How homeowners can help prevent pollution 10 Other 10 Other 10 Dow homeowners can help prevent pollution 10 Dow homeowners can help prevent pollution	1 Direct mailings to your home or business Community newsletters Other (specify)
Shiawassee Watershed Survey Results Shiawassee River 16+%	with 1 being most important and 5 being the least important should be in the vareRemove paper/trash/debris in the river and tributaries to improve its appearancewith 1 being most important and 5 being the least important and 5 being the least important should field in the waterRemove paper/trash/debris in the river and tributaries to improve habitat conditions for fish and wildlife in the waterthe z a b bid noImprove habitat conditions for fish and wildlife in the waterthe z a b bid noImprove habitat conditions for fish and wildlife in the waterthe z a b bid noImprove habitat conditions for fish and wildlife protectionthe z a b bid noImprove bublic education about the benefits of protecting the SRWthe d z a b bid rooExpand public education about the benefits of protecting the SRWthe d a b bid rooRemove sources of human waste in the Watershed & the Great Lakesthe q a b bid rooRemove sources of human waste in the Watershed & the Great Lakesthe q a b bid rooRemove sources of human waste in the Watershed at the quality and accessibility of dinking water (wells)the dreat lakesIncrease community planning to address development & protection of water qualthe tab bid bid bid bid bid bid bid bid bid bi	What types of information about the Shiawassee Watershed interest you most? (Check as many as apply)Water quality14Water quality14How lcan volunteer to help restore WatershedBacteria levels13Fish and wildlife10Parks and public recreation areas5OtherOtherWhich of the following is the best approach to keep you informed regarding the progress in developing a plan	Public meetings/workshops Newspaper articles Cable TV Web page

Page 47 Shiawassee River Watershed Management Plan

Watershed Management Plan

ri	Table 5-1 Meeting Dates						
	Surface Water Advisory Committee	Monitoring and Mapping	Public Education and Participation	BMP Committe	Work Group	Stakeholders Workshops	Combined Stakeholder/ Public Meetings
September 2004		20 th			2 nd		
October 2004		5 th &13 th	25 th				
November 2004	17 th		29 th				
December 2004	15 th						
January 2005			3 rd & 19 th			31 st	
February 2005	16 th		7 th			01	
March 2005	23 rd		2 nd & 21 st				
April 2005	20 th		18 th &25 th				
May 2005	18 th		5 th & 17 th			23 rd	
June 2005			<u> </u>		29 th (2)		
July 2005					27 th (2)		
August 2005	17 th				31 st (2)		29 th (2)
September 2005	21 st			10 th & 24 th	28 th (2)		/
October 2005	19 th				26 th (2)		
November 2005	16 th				- ()		30 th (2)
December 2005							
January 2006	18 th		23 rd		4 th (2) & 23 rd		
February 2006	15 th		27 th				1 st (2)
March 2006	15 th		20 th				
April 2006	19 th						
May 2006	17 th		15 th		31 st		
June 2006	21 st		19 th		-		
July 2006			17 th				
August 2006						2 nd	
September 2006	20 th		18 th				
October 2006	18 th		16 th		25 th		
November 2006	22 nd						
December 2006	20 th		18 th				
January 2007	17 th		22 nd				
February 2007	21 st		26 th		16 th		
March 2007	28 th		19 th				
April 2007	18 th	23 rd					
May 2007	16 th		21 st	15 th			
June 2007	20 th	5 th		19 th			
July 2007		24 th	16 th	17 th			
August 2007				21 st			
September 2007	19 th	25 th	17 th	18 th			
October 2007	17 th		15 th				

Table 5-1 Meeting Dates